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Biosynthesis/Screening of
Cyclic Peptide Libraries against
Bacterial Toxins

ABSTRACT

Available methods for developing and screening small drug-like molecules able to knockout toxins or pathogenic
microorganisms have some limitations. In order to be useful, these new methods must provide high-throughput
analysis and identify specific binders in a short period of time. To meet this need, we are developing an approach that
uses living cells to generate libraries of small biomolecules, which are then screened inside the cell for activity. Our
group is using this new, combined approach to find highly specific ligands capable of disabling anthrax Lethal Factor
(LF) as proof of principle.

Key to our approach is the development of a method for the biosynthesis of libraries of cyclic peptides, and an
efficient screening process that can be carried out inside the cell.

INTRODUCTION

The exposure of U.S. postal workers to Bacillus anthracis, the pathogen causing anthrax, in 2001 revealed a gap in
the world’s overall preparedness against bioterrorism. Unfortunately, anthrax is just one of many potential weapons of
biochemical terrorism, there are so many other known toxins like ricin or botulinum [1] as well as unknown biological
threats that could also be used against the civil population [2]. This alarming situation uncovers an urgent need for
developing new methods for efficient synthesis, and fast screening of small high-affinity ligands able to bind and
inactivate a particular biological toxin [3].

Available methods for producing and screening high-affinity inhibitors against particular molecular targets are either
based in rational or combinatorial approaches [4]. The rational approach usually requires the molecular structure of
the target to be knocked out, and then potential binders are selected from a virtual library of compounds using
docking software [5]. Despite the recent advances in computing technology and development of adaptive docking
software [5], this is still a slow although promising process. Combinatorial approaches, on the other hand, use a
random approach to generate large number of compounds that are then screened against a biomolecular molecular
target [6, 7] . Most of the methods for library screening, however, are performed in vitro, which is a long and laborious
process.
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Scheme 1. A cell-based approach for the biosynthesis and screening of genetically encoded libraries.
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In vivo screening, on the other hand, opens the possibility of using single cells as microfactories where the
biosynthesis and screening of particular inhibitor can take place in a single process within the same cellular
cytoplasm (Scheme 1) [8]. The use of a complex molecular environment, such as the cellular cytoplasm, provides the
ideal background for the selection of highly specific inhibitors. Furthermore, the recent introduction of genetically
encoded fluorescence-based assays [9] allows the use high-throughput screening methods such as fluorescence-
activated cell sorting (FACS) for studying molecular interactions inside living cells [10].



In this review | would like to present some of the most recent efforts of my group towards the development of a cell-
based approach for the biosynthesis and high throughput screening of high affinity ligands against bacterial toxins
inside living cells.

RESULTS

My group has been developing this combined approach to find highly specific ligands capable of disabling Bacillus
anthracis toxins [11]. The high pathogenicity of anthrax is mostly due to rapid bacterial growth combined with the
secretion of three powerful exotoxin components: edema factor (EF), lethal factor (LF), and protective antigen (PA).
EF is a calcium and calmodulin-dependent adenylate cyclase (AC) that converts cellular ATP into cyclic AMP (cAMP)
[12]. LFis a Zn2+-dependent metalloprotease [13] that cleaves and inactivates mitogen-activated protein kinase
kinases (MAPKKs) [14]. PA binds to a cell surface anthrax toxin receptor (ATR/TEM-8 or CMG-2) [15-17] where it is
activated by proteolytic cleavage by furin-like proteases [18]. This step enables the formation of an heptameric pore
[19] that allows cellular entry of LF and EF. Once inside the cell, LF and EF cause extensive cellular damage to the
host cell defense system. Although the complete mechanism of pathogenesis is not yet fully understood, the
disruption of key signaling pathways mediated by MAPKKs seems to lead first to the lysis of macrophages [20, 21],
impairment of dendritic cells and later to the death of the host [22]. The pivotal role of LF in the virulence of the toxin
suggests that inhibitors of this enzyme may provide protection against cytotoxicity. For this purpose we have recently
developed an intein-based approach for the intracellular production of cyclic peptide libraries [11, 23] as well a new
cell-based fluorescent assay for LF [11] that can be interfaced with FACS for the high throughput screening of
potential LF inhibitors.
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Figure 1. Primary and tertiary structure of cyclotides from the plants Momordica cochinchinensis (MCoTI-1l) and
Oldenlandia affinis (Kalata B1), and Bowman-Birk sunflower trypsin inhibitor 1 (SFTI-1).

In vivo biosynthesis of cyclotides and other cyclic peptides

Cyclotides are a new emerging family of large plant-derived backbone-cyclized polypeptides (=28-37 amino acids
long) that share a disulfide-stabilized core (3 disulfide bonds) characterized by an unusual knotted structure (Figure
1) [24, 25]. In this motif, an embedded ring formed by two disulfide bonds and their connecting backbone segments is
penetrated by the third disulfide bond. Cyclotides contrast with other circular poylpeptides in that they have a well-
defined three-dimensional structure, and despite their small size, can be considered as miniproteins. Their unique
circular backbone topology and knotted arrangement of three disulfide bonds makes them exceptionally stable to
thermal and enzymatic degradation [26]. Furthermore, their well-defined structures have been associated with a
range of biological functions such as uterotonic activity, inhibition of trypsin and neurotension binding, cytotoxicity,
anti-HIV, antimicrobial, and insecticidal activity [27, 28]. Together, these characteristics make cyclotides ideal
candidates to be used as molecular scaffolds for the development of stable high affinity ligands in drug development
[29, 30].

Our group has recently reported the use of engineered protein splicing units for the in vitro and in vivo generation of
folded cyclotides [23]. Our biomimetic approach is based on the use of an intramolecular version of native chemical
ligation (NCL) [31] to produce the head-to-tail or backbone cyclization of the corresponding linear precursor (Figure
2). Intramolecular NCL requires the presence of an N-terminal Cys residue and a C-terminal a-thioester group in the
same linear precursor [32, 33]. As shown in Figure 2, this was accomplished by producing a recombinant protein
where the linear cyclotide precursor was fused in frame at its C- and N-terminus to a modified intein and a Met



residue, respectively. This allows the generation of the required C-terminal a-thioester function [34] and N-terminal
Cys residue [35]. This approach has been successfully used for the biosynthesis of the cyclotides Kalata B1 (KB1)
[23] and MCoTlI-ll [11] as well as small libraries based on the cyclotide KB1 (Figure 3a and 3c) [23]. Using the same
biosynthetic approach we have also produced a small library based on the Bowman-Birk inhibitor sunflower trypsin
inhibitor-1 (SFTI-1) (Figure 3b and d) [11]. With just 14 amino acids SFTI-1 is the smallest and more potent naturally
occurring Bowman-Birk inhibitor, and therefore it also provides an ideal template for the design of specific inhibitors to
target proteases like LF [36, 37].

rSH SH
[ et JSBR Linear precursor IIEVIE  Modified Intein

l Met removal

l/SH SH
H,N-Cys CO-NH Modified Intein

lT N-S Acyl shift
(SH

H,N
i) Backbone cyclization l

i) Oxidative folding

Bowman-Birk Trypsin Inhibitor
SFTI-1

Cyclotide MCoTI-Il

Figure 2. Biosynthetic approach for in vivo production of cyclotides KB1 and MCoTI-Il, and Bowman-Birk trypsin
inhibitor SFTI-1 inside live E. coli cells. Backbone cyclization of the linear precursor is mediated by a modified protein
splicing unit or intein. The cyclized product then folds spontaneously in the bacterial cyctoplasm.
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Figure 3. In vivo biosynthesis of cyclotide MCoTI-Il (a) and Bowman-Birk trypsin inhibitor SFTI-1 (b) [11]. In both
cases soluble cellular lysates were analyzed by reverse-phase HPLC after being purified by affinity chromatography
on trypsin-immobilized agarose beads. Analytical HPLC trace of a KB1-based library (c) obtained in vitro under
conditions mimicking physiological conditions [23]. ES-MS analysis of a SFTI-1 library encoding different Ala mutants
(d) [11]. Numbering for KB1 and SFTI-1 mutants is as described in Figure 1.



a FRET observed No FRET observed

Lethal Factor
protease

ﬁ )

(GGS), RRKKVYPYPMEGTIA (GGS),

b

3000000 FRET*, LF-

125000

100000
22000000
75000

50000
1000000

fluorescence / cps
Fluorescence / cps

25000

)

o : i : ; - 450 475 500 525 550 575 600
450 475 500 525 550 575 600 A/nm

Alnm
Figure 4. (a) Principle of a genetically encoded FRET reporter for LF activity. (b) /n vitro cleavage of FRET reporter
containing two Gly-Gly-Ser repeats by LF protease. Fluorescence spectra of a 10 nM solution of FRET reporter
incubated with LF (100 nM) at different time points. Excitation was done at 413 nm. (c) /n vivo cleavage of FRET
reporter containing six Gly-Gly-Ser repeats followed by fluorescence spectroscopy. Fluorescence spectra of E. coli
cells expressing LF reporter in the presence (FRET", LF") or absence (FRET", LF) of LF. B. Cells were excited at
490 nm.

Development of cell-based fluorescence resonance energy transfer (FRET) reporter for LF activity

We have also designed several genetically encoded FRET-based reporters specific for the anthrax LF protease.
These reporters consist of an optimized FRET pair of fluorescent proteins, YPet and CyPet, which have been recently
described by Daugherty and co-workers [38] for the study of molecular interactions in vivo [10]. The CyPet and YPet
proteins were linked together by a flexible linker containing a consensus recognition site for LF protease [39] flanked
at both its N- and C-termini by several repeats of the flexible tripeptide Gly-Gly-Ser (Figure 4a) [40]. In vitro evaluation
of the different reporters showed that at least a minimum of two Gly-Gly-Ser repeats are required at each side of the
LF peptide recognition motif for efficient cleavage by LF. Interestingly, the introduction of multiple Gly-Gly-Ser repeats
in the linker between the CyPet and YPet fluorescent proteins had a relatively minor effect on the FRET efficiency of
the protein constructs containing the longer linkers. In vitro evaluation of the different FRET reporters showed around
a 10-fold decrease in FRET signal upon cleavage with LF (Figure 4b).

An optimized FRET-reporter containing six Gly-Gly-Ser repeats to each side of the LF peptide recognition motif was
used next in the development of a cell-based FRET reporter for LF activity. This approach employs bacterial cells as
individual micro-reactors where the substrate and the enzyme (i.e., LF protease) are sequentially expressed. This
was accomplished by cloning the optimized FRET reporter and LF into two compatible, tightly controlled and
inducible expression plasmids. The genetically encoded FRET-reporter was cloned into an expression pBAD-derived
vector. This expression plasmid contains an araBAD-driven promoter and a p15 replicon. LF was cloned into a pRSF-
based vector to give the expression plasmid pRSF-LF. This expression vector contains a T7-driven promoter and an
RSF origin of replication [41]. These two expression plasmids are fully compatible for the sequential expression of
proteins in E. coli cells, and they have been used for the study of protein—protein interactions in vivo [42].

We have recently shown that E. coli cells co-transformed with both plasmids can be induced into either the FRET-on
or FRET-off states by expressing only the reporter protein or both sequentially, respectively (Figure 4c). The FRET
signal of living bacteria induced to express the FRET-reporter decreased approximately 5 times in less than 1 hour
upon induction of LF expression (Figure 4c). Hence, expression by the same cell of any potential LF inhibitor during
the FRET-on state can be readily screened by measuring the FRET ratio at different times during the induction of LF.
Potential inhibitors will inhibit the cleavage of the substrate at early times of LF induction. In contrast, cells containing
non-inhibitors will efficiently cleave the substrate, rapidly reaching the FRET-off state.

CONCLUDING REMARKS



Recent advances in the fields of protein engineering are allowing for the first time the biosynthesis of complex cyclic
peptides inside living cells [43]. We have recently used two natural disulfide-containing cyclic peptide scaffolds, the
cyclotides Kalata B1 and MCoTl-ll, and the Bowman-Birk SFTI-1 trypsin inhibitor (SFTI-1) as templates for the in vivo
biosynthesis of peptide libraries using protein splicing units [11, 23]. These types of scaffolds have a tremendous
potential for the development of therapeutic leads based on their extraordinary stability and potential for grafting
applications [36, 44]. We have also developed a cell-based FRET reporter for anthrax LF protease that can be easily
interfaced with sensitive FACS techniques for the rapid screening of genetically-encoded peptide-based libraries in E.
coli against LF.

It is also important to remark that although our initial efforts have focused is the production of high-affinity ligands that
can disable bacterial toxins, this cell-based approach can also be easily used for screening molecules capable of
disrupting any biomolecular interaction. For example, this approach could be also used to find molecules that may
disrupt the destructive mechanisms involved in cancer and neurodegenerative diseases such mad cow and
Alzheimer’s.
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